
DAA ISI Bangalore 18 Sep 2023

Midterm Examination
(2.5 hours)

Write your roll number in the space provided on the top of each page.
Write your solutions clearly in the space provided after each problem. If the space
provided is insufficient, please write your solution on additional sheets, and clearly
state in the main paper that where your solution appears. You may also use addi-
tional sheets for working out your solutions; attach all additional sheets at the end
of the question paper. Attempt all problems.

Name and Roll Number:

Problem Points Score

1 10

2 10

3 15

4 15

5 15

Total: 65

Roll Number:
Design and Analysis of Algorithms
Midterm Examination (18 Sep 2013) Page 2 of 7

1. Consider the following directed graph G0.

a b

c

d e f

g h i j k l

(a) 2State why G0 is not strongly connected.

(b) 3Find its strongly connected components, and draw the DAG of strongly connected
components.

(c) 3Find the smallest set of edges whose addition to G0 will make it strongly connected.

(d) 2State why no smaller set can do the job?

Roll Number:
Design and Analysis of Algorithms
Midterm Examination (18 Sep 2013) Page 3 of 7

2. (Topological labelling) Consider the directed graph G1 shown below; note that it has no
directed cycles. We wish to assign distinct labels in the range {1, . . . , 6} to the vertices of
the G1 so that for every directed edge (u, v), the label of u is greater than the label of v.
We call such a labelling a topological labelling.

(a) 5Find a topological labelling for the graph G1 given below. Write the label clearly next
to each vertex.

(b) 5Such a topological labelling can be found using DFS. Complete the following DFS
program by supplying the appropriate code in the space provided above the line marked
by (???) (but do not modify any other line of the code), so that it prints the topological
labelling for the input graph G. Assume that the graph is available in the memory of
the program in the format we discussed in class; in particular, v.name is the name of
the vertex, and v.adj is the list of vertices adjacent to v. Each vertex has an additional
attribute label; in the end v.label should be the label assigned to vertex v.

def explore(v):

v.visited = True

for w in v.nbrs:

if not w.visited: explore(w)

(???)

def dfs(list_of_vertices):

global clock

clock = 0

for v in list_of_vertices:

v.visited = False

v.label = 0

for v in list_of_vertices:

if not v.visted:

explore(v)

for v in list_of_vertices:

print(v.name, v.label)

Roll Number:
Design and Analysis of Algorithms
Midterm Examination (18 Sep 2013) Page 4 of 7

3. Suppose M is an m-bit number. Consider the sequence x0, x1, . . ., defined by x0 = 1 and
xk+1 = Axk +B mod M , where A,B ∈ {0, 1, . . . ,M − 1}.
(a) 5Suppose that gcd(A− 1,M) = 1. By appealing to some version of Euclid’s algorithm

discussed in class, show how a number C ∈ {1, 2, . . . ,M − 1} can be found efficiently
(in time polynomial in m) such that C(A− 1) = 1 (mod M).

(b) 10Next, suppose an n-bit number N is given. Describe an algorithm to determine xN in
time polynomial in m and n. You need not write any code; just write the steps in text,
and state which algorithms we studied in class you will use for each step. (You may
start by showing that there is a D such that xk+1 −D = A(xk −D); state how such
a D can be computed using the number C computed above. Or, you may use some
other more direct method to determine xN .)

Roll Number:
Design and Analysis of Algorithms
Midterm Examination (18 Sep 2013) Page 5 of 7

4. For a sequence X = (x1, x2, . . . , xn) of n distinct numbers and another sequence Y =
(y1, y2, . . . , yk) of k distinct numbers, let

ni = |{j : xj ≤ yi}|,

for i = 1, 2, . . . , k. Assume k ≤ n.

(a) 10Describe an efficient algorithm that given X and Y as input, outputs n1, n2, . . . , nk.
Assume that two numbers can be compared in unit time, and numbers of magnitude
at most n can be added in constant time. You do not have to write the code; just
mention the steps clearly, and state how long your algorithm takes in terms of k and
n. For full credit, you must present an algorithm that runs in time O(n log k).

Roll Number:
Design and Analysis of Algorithms
Midterm Examination (18 Sep 2013) Page 6 of 7

(b) 5Argue that for every k ≤ n, any comparison-based algorithm that solves the above
problem must make Ω(n log k) comparisons; alternatively, argue that any decision tree
where comparisons are performed at the the internal nodes and answers are declared at
the leaves must have height Ω(n log k). [Hint: As we did while discussing the element
distinctness problem in class, consider the partially ordered set (on X ∪ Y) of the
outcomes that led to each leaf; what must this look like?]

5. 15Consider a directed graph G = (V,E) with a source vertex s, from which every other vertex
is reachable. Each edge e in the graph has a positive capacity cap(e). Consider a path p
from s to a vertex v ∈ V . The bottleneck capacity of p is the minimum weight of an edge
on p:

bcap(p) = min
e∈p

cap(e);

note that min taken over an empty set is ∞, denoted in the code below by INF. As a
concrete example, consider the following graph.

t

u

v

w

s

x

7

2

2

65

3

3

4

1

3

4

5

6

Here the path s −→ w −→ x has bottleneck capacity 4, while the path s −→ w → u → t
has bottleneck capacity 3. (The edges in these paths are made dashed in the above picture
to easily identify them, but the dashed lines have no other significance.) Complete the code
on the next page so that in the end, for each vertex v, an (s, v)-path of maximum bottleneck
capacity, and the capacity of that path are printed. The graph is available in the memory in
the form of adjacency lists (as discussed in class): for a vertex u, the list u.out nbrs contains
pairs (v, cap), where cap is the capacity of the edge (u, v). You can use the functions min or
max in your code.

Roll Number:
Design and Analysis of Algorithms
Midterm Examination (18 Sep 2013) Page 7 of 7

def max_bottleneck_path(s):

for v in vertex_list: v.bcap = 0 # initialize all bcap values to 0

(s.bcap, s.prev) = (INF, None)

H = makeheap(vertex_list) # maxheap wrt the bcap values of the vertices

while H: # exit while loop if heap H is empty

u = deletemax(H)

for (v, cap) in u.out_nbrs:

if v.bcap < ______(________ , ________) :

v.bcap = _____________________

v.prev = _____________________

bubble_up(H,v)

max_bottleneck_path(source) # initially source is set to the vertex s

for v in vertex_list:

path = []

The while loop below uses the information generated above

to trace the path backwards from the vetex to the source.

w = v

while w: # exit loop if w == None

path = path.append(w.name)

w = ______________

print(v.name, ’:’, ’path=’, [v for v in reversed(path)], ’capacity=’, v.bcap)

